Angus Ferraro

A tiny soapbox for a climate researcher.

EUMETSAT Conference 2014: Challenges and advances in satellite measurement

2 Comments

Atmospheric measurement is an extraordinarily difficult problem. It’s a fluid capable of remarkable feats of contortion, and it contains a number of important constituents, including one – water – which flits easily between solid, liquid and gaseous forms. Satellite instruments offer a unique way to measure the state of the atmosphere, viewing broad swaths of the planet from space.

I’m at the EUMETSAT Meteorological Satellites Conference in Geneva, which is as good a place as any to understand what a remarkable achievement this is. These are my highlights from the first two days, and reflect my particular interests, so I have probably missed a host of other interesting scientific advances.

A major theme of the ‘climate’ session at the conference was the problem of generating long-term climate records from satellite data that is often very choppy. Satellites and their instruments can have very short lifetimes, usually just a few years, though some (like the rather venerable 17-year-old TRMM) buck the trend. Satellites can only carry so much fuel to keep them in orbit, and their instrumentation gradually degrades over time in the harsh environment of space. To maintain a long-term record, you would want to send up identical instruments into identical orbits – but in reality this is not possible. The instruments themselves are made with extraordinary levels of precision, but their complex and delicate nature means it’s not actually possible to make them identical. They will usually have slightly different sensitivies. The satellites carrying them will have different orbits, which means they might measure different parts of the Earth at different times.

Changes like this can cause major stability problems for satellite records. Each time a new instrument goes up on a new satellite the record tends to ‘jump’. Common reasons for this include slight differences in the sensor’s sensitivity, and sampling changes due to the different orbit. As an example, rainfall in the Tropics usually peaks in the afternoon. If you send up a new instrument which passes over the Equator in the morning, it will look like rainfall has abruptly decreased compared to one that passes in the afternoon, but all that’s happened is that you’re measuring it at a different time. These so-called ‘inhomogeneities’ need correction if we are to stand a chance of using these records for studies of climate (which is the statistics of the atmosphere and oceans over decades – many satellite lifetimes).

The ‘climate’ session at EUMETSAT highlighted many approaches to such problems. There was also discussion of the potential for improving the physical consistency between datasets, so common ‘budgets’ can be closed. However, the fact that our observations sometimes don’t ‘add up’ is an important piece of information. It means we’re getting something wrong – but exactly what is of course a rather difficult question.

On Tuesday afternoon a session on precipitation measurement included some very impressive results from the new Global Precipitation Measurement (GPM) mission. A number of technological advances, combined with a unique approach of using two reference satellites to calibrate the measurements from a ‘constellation’ of 11 others, now provide unprecedented detail on Earth’s rain and snowfall. High-frequency microwave measurements combined with radar allow us to look at the icy parts of clouds and to see areas where even very light rain is falling. This allows us to look at, for example, tropical storms in a whole new light – and most importantly, because it’s based on such a huge array of measurement platforms, we won’t miss a single one.

Another impressive aspect of the GPM mission is the speed with which things have moved. Since its launch in February 2014 GPM has been providing huge streams of data, which an international team has worked on to convert to precipitation measurements. Within a short time the data were available to the public. The data were available to the world’s major weather forecasting centres within 2 weeks, allowing them to get a much better picture of the current state of the atmosphere (this is important because small errors in the initial state of the atmosphere can lead to large errors in a weather forecast). In short, GPM looks like a thoroughly modern measurement misson: an international collaboration, operating openly and with detailed documentation, providing timely and freely-available data. Plus it produces some cool graphics (see below).

One of the first storms observed by the NASA/JAXA GPM Core Observatory on March 17, 2014, in the eastern United States revealed a full range of precipitation, from rain to snow. Image Credit: NASA/JAXA

The day closed with a visit to the headquarters of the World Meteorological Organisation for presentations and discussions on the socioeconomic value of satellite data – that’s covered in another post.

EUMETSAT Post 2: Socioeconomic benefits of meteorological satellites. 

EUMETSAT Post 3: Final highlights.

Advertisements

Author: Angus Ferraro

Trainee secondary physics teacher and former climate research scientist.

2 thoughts on “EUMETSAT Conference 2014: Challenges and advances in satellite measurement

  1. Pingback: EUMETSAT Conference 2014: Socioeconomic benefits of meteorological satellites | Angus Ferraro

  2. Pingback: EUMETSAT Conference 2014: Final highlights | Angus Ferraro

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s